If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+a^2=89
We move all terms to the left:
a^2+a^2-(89)=0
We add all the numbers together, and all the variables
2a^2-89=0
a = 2; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·2·(-89)
Δ = 712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{712}=\sqrt{4*178}=\sqrt{4}*\sqrt{178}=2\sqrt{178}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{178}}{2*2}=\frac{0-2\sqrt{178}}{4} =-\frac{2\sqrt{178}}{4} =-\frac{\sqrt{178}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{178}}{2*2}=\frac{0+2\sqrt{178}}{4} =\frac{2\sqrt{178}}{4} =\frac{\sqrt{178}}{2} $
| 11x-15=8x+7 | | 10(s-9)=-151 | | 3x+5=-2(3x-x) | | 8-t=42 | | =7(3p+4)+5(2p+3) | | (5x-2)/4=12 | | 2(9-y)=3(y+16) | | 5(m+3)=3(m+9) | | 6x+13=—5 | | 15=-3-9x | | d/8+6=12 | | x=(x+28)/5 | | 2,5x^2+10x=0 | | x=x+28/5 | | 1/3k+5=14 | | 5(2x+3)=37-2(5x-1) | | 6x+15=(43) | | 3+4(x−1)=12x−15 | | 2+u/2=7 | | 12x-11x=73-30 | | F(x)=2x² | | 6x+15=1/2(11x+73) | | 60-q=19 | | x−8=4(x−1) | | x−30=5(x−9) | | 0.1x+0.1x*x=0.4 | | (3r+1)²+(r+2)²=6 | | 1x=43 | | (3p—4)²=16—6p | | (3p-4)²=16-6p | | 3-7n=12+4n | | x2+5x+21=0 |